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Abstract 

The robotics applications in Urban Search and Rescue (USAR) in a disaster context 

raised great attention in recent years. It eliminates the human need to search the victims, 

which greatly reduces the potential human and property loss. However, an intelligent 

robot needs to be trained and upgraded from experience to execute the task safely, 

accurately and efficiently. While robot training in the real world is expensive and time-

consuming, a 3D simulator was introduced to solve this problem. The simulation makes 

the robot training fast and efficient. However, there is not 3D simulator explicitly 

designed for USAR. Therefore, in this project, a 3D-realistic-simulator simulating multi-

robots executing tasks, such as frontier exploration, is designed for future researchers to 

test their coordination algorithm. The 3D simulator was tested with a greedy frontier 

exploration algorithm. The results show that the robot fleet will explore the environment 

more efficiently with an increasing number of the robot, and the results met the 

expectation. The experiments proved that the 3D simulator design is able to mimic real-

world robot behaviour accurately and has a great potential for future improvement. 
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1. Introduction 

Urban Search and Rescue (USAR) in a disaster context can be complicated and slow by 

humans due to complex weather and the environment [85 1]. Therefore, robotic 

applications raised great attention recently [1]. The main advantages of a rescue robot are 

the following. First, the robot will not be affected by emotion and be object-oriented. 

Second, robots can be easily repaired or replaced [2]. Third, robots can learn and upgrade 

from past experience, for example, reducing the time cost and increasing the accuracy of 

environment mapping. Finally, robots can be deployed in large quantities and move 

freely in complex terrains, such as a highly cluttered environment [1][2]. Nowadays, a 

fleet of autonomous robots is commonly used to run USAR because of increased 

efficiency [1]. The robots need to be tested and improved repeatedly before coming into 

service [3]. However, it is impossible to test the robot in every disaster scene. Building a 

simulated disaster context for testing is an alternative, but it is expensive and time-

consuming. A 3D simulator was introduced to solve the problem. A 3D simulator is 

software simulating a realistic environment and three-dimensional models (e.g., humans 

and robots). A well-designed 3D simulator should follow the scientific laws close to 

reality so that the robot can be designed and trained accurately. [4][5][6][7][8] have 

achieved simulations of multi-robot for different applications, including terrestrial, aerial, 

and underwater robots. However, there is no simulator designed explicitly for USAR. 

Therefore, in this thesis project, a multi-robot 3D-realistic-simulator will be designed for 

future researcher to test their coordination algorithm. 

Robot Operating System (ROS) is chosen as the middleware for this project to develop 

the robot control system because it is typically designed for robotics. It has a vibrant 

community with numerous support [9]. The researcher can easily share their work and 

implement other state-of-art in the community. In ROS, projects are built in the form of 

packages. ROS provided a publisher/subscriber communication system. The package can 

publish its result through a node and subscribe from other packages. It is easy to develop 

a new project because it can simply subscribe to existing packages to obtain desired data 

without integration [9].  
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2. Project Requirement 

This section will describe the project requirement in detail. This project aims to build a 

3D-realistic simulator to simulate multi-robot executing USAR tasks cooperatively in a 

3D simulated environment. Therefore, the project can be divided into two main parts: 3D 

Environment Simulation and Robot Simulation.  

2.1 3D Environment Simulation 

For environment simulation, it is required to model all possible components in the 

disaster scene. However, to save the simulation cost, the simulator will focus on 

modelling the terrain, unstructured obstacles, natural environment, robots, and victims. 

The simulator should also mimic the physical properties in real-life of all the elements in 

the disaster, including size, shape, texture, mass, and collision.  

2.2 Robot Simulation 

Two main tasks of the rescue robot in USAR are unknown environment exploration and 

search of the victims [1]. Therefore, the robot requirement can be further divided into 

Unknown Environment Exploration and Victim Detection.  

2.2.1 Unknown Environment Exploration 

The simulated robots should be able to run frontier exploration, which is the most 

common exploration technique. The frontiers are defined as boundaries between 

unknown and explored areas [10]. The core of frontier exploration is autonomous 

navigation, which requires a navigation stack set up in the robot [1].  

 

Figure 1. Navigation stack 
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Figure 1 shows the recommended navigation stack from ROS [11]. In general, the robot 

should have 1) simultaneous localization and mapping (SLAM) and then 2) path planning 

for autonomous navigation.  

2.2.1.1 SLAM 

simultaneous localization and mapping (SLAM) based algorithm is commonly used to 

map the unknown environment [1]. In SLAM algorithms, a map containing information 

about obstacles, free space, and unknown space is often generated based on the robot's 

sensor input [1][12][13]. By comparing the features from the sensor input in different 

time frames, the algorithm is then able to localize the robot in the map [1] [12] [13].  

2.2.1.2 Path Planning 

Path planning is defined as an agent moving from the starting point to a designated point 

by avoiding obstacles at minimum cost [14] [15]. The cost involves the time and energy 

that the robot uses and the distance it travels [14] [15]. Path planning is divided into 

global path planning and local path planning [14]. In global path planning, the global path 

planner generates a trajectory from the current position to the destination based on the 

map. Sometimes, there are moving obstacles across the trajectory, and the map does not 

update the obstacles. Therefore, the local path planner is required to adjust the trajectory 

to avoid obstacles based on the local sensor input.  

2.2.2 Victim Identification 

In order to rescue a victim, the robot should first gather information about the victim, 

including current condition, location, and orientation. These require the simulated robots 

to be capable of generating high-level semantic observations (e.g., victim detected and 

victim health status) based on sensor input.  

3. Project Objectives 

This section describes the objectives of 3D simulator design. 

• Integrated with ROS 

o The proposed software or algorithms should be integrated with ROS to 

reduce the development cost.  

• Compatible with an arbitrary model of the robot 
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o The design should support any robot models so that future researchers can 

test their algorithms with minimum integration. 

• Capable of adding an arbitrary number of robot 

o The design should be able to simulate a random number of the robot at the 

same time. 

•  Should share data with others 

o Robots are often required to communicate locally when global 

communication is not available due to low signal. Therefore, the design 

should simulate robots communicating with each other. 

4. Literature Review 

In this section, the state-of-art of two requirements will be reviewed and discussed in 

detail. A proposed software or algorithm will be selected based on the discussion for 

future implementation. 

4.1 3D Environment Simulation 

To simulate a 3D environment, the first step is to choose the 3D simulator platform to 

work on. This section will investigate various 3D simulators available on the internet. 

[16] concluded a list of the most promising 3D simulators. The paper ranked the 

simulators based on the number of scientific research from "Google Scholar". Table 1 

shows the strings of the paper used in "Google scholar" and the rank. Santos et al. [16] 

analyzed the top three most promising simulators: Gazebo, Unity and V-Rep. However, 

Unity is a cross-platform game engine developed by Unity Technologies [17]. This paper 

will analyze Gazebo, V-Rep, and Webots since Webots is the next most promising 

simulator, and all three simulators were mainly designed for robotics applications.  
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Table 1. 3D simulators ranking based on number of research [16]

  

The literature review will be divided into six sub-categories summarized from the 

objectives and are essential characteristics of the simulators [5][16]. The simulators will 

be analyzed individually about all five sub-categories: 1) Library of Models, 2) Ability to 

Customize the Simulated Scene, 3) Ability to Customize the Robots, 4) Integration with 

ROS, 5) Realistic Simulation, and 6) Multi-robot Application. 

4.1.1 Library of Models 

An extensive repository of 3D models is significant to build a simulated world. With an 

extensive library, less effort will be needed to model the environment. The 3D models 

include the terrain, unstructured obstacles, natural environment, robots, and victims. 

A. Gazebo 

Gazebo is an open-source 3D-robotic simulator. Thanks to the broad base of contributors, 

Gazebo provides the user with an extensive library of 3D models, including plants, 

vehicles, furniture, buildings, and even collapsed buildings. Various popular robots are 

also equipped, including PR2, Pioneer2 DX, iRobot Create, and Turtlebot [18] [19].  

B. V-Rep 

V-Rep is a versatile and scalable simulation framework. It offers a large repository of 

models from infrastructures like walls to furniture. Many popular robotic arms, mobile 

robots, and even humanoid robots have already been included in the software [5]. 

C. Webots 
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Webots is a mobile robotic simulation software developed by Cyberbotics Ltd. in Swiss. 

It is capable of modelling and simulating any wheeled, legged, or aerial robots. Also, a 

complete library of sensors and actuators is provided [20]. 

4.1.2 Ability to Customize the Simulated Scene 

The capability to customize the environment where the robots move in the simulator is 

essential since no disaster scene is the same. There will not always exist a matching 

model in the library. The ability to customize makes it possible to reproduce a specific 

disaster scene. 

A. Gazebo 

Not many modelling features are provided in Gazebo. The 3D models can be directly 

inserted into the scene from the local and online library. But it is not possible to edit the 

model inside the Gazebo. The object must be modelled through an external software, for 

example, Blender, and imported to Gazebo in URDF (Universal Robot Description 

Format) file. However, Gazebo does provide a building editor in which basic 

infrastructure can be built using walls and floors. The scene can also be edited through 

a .world file in SDF (Spatial Data File) format. The location and orientation of the models 

are set manually in the .world file. Other physical properties like size, inertial, mass and 

collision can be adjusted as well [18] [19].  

B. V-REP 

V-REP provides user-friendly modelling features where users can directly drag and drop 

the model into the V-REP scene. All the models inside the scene are available to be 

accessed, and their physical properties can be modified through the user interface (Figure 

2). V-REP includes a URDF import tool as well [19].  
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Figure 2. V-REP user interface [19] 

C. Webots 

Webots uses advanced hardware-accelerated OpenGL technologies to create a simulated 

environment. Similar to Gazebo and V-REP, the user can drag and place the 3D model in 

Webots. The models' physical properties are defined as nodes including geometry, 

physics, and textures and are ready for modification in the Webots: Scene Tree (Figure 

3). 3D models can be imported through a VRML97 standard file from external 3D 

modelling software [20]. 

 

Figure 3. Webots scene tree [20]                                                                  
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4.1.3 Ability to Customize the Robots 

The robot configuration varies in different applications. The capability of modifying the 

robot, for example: replacing a laser scanner with a stereo-camera, makes it possible to 

test different robot configurations quickly. 

A. Gazebo 

As discussed in the last session, a robot's geometry configuration can be modified 

through the URDF file outside Gazebo. The sensors and actuators are prepared as 

Gazebo-ROS plugins in the Gazebo database and can be added to the Robot's URDF file 

by following the tutorial [21]. The parameters of them can be adjusted inside the URDF 

file. 

B. V-REP 

Customizing the robots in V-REP can be done through visual editing. The sensors can be 

installed by simply dragging and placing the sensor on top of the Robot in V-REP. The 

actuators are generated as the ROS plugins through a vrep_ros_bridge package and 

installed in the same way Gazebo does [19]. 

C. Webots 

Webots prepared the sensors and actuators as nodes to be readily inserted into any robots. 

They can be mounted to any frame by merely adding a node to the structure and selecting 

the desired sensors/actuators [20]. 

4.1.4 Integration with ROS 

Because ROS is an open-source community, with a high integration with ROS, the 

simulator can implement many existing robot-control algorithms with minor 

modification. 

A. Gazebo 

Gazebo is readily integrated with ROS by a set of Gazebo plugins that support a large 

repository of robots, sensors, and actuators. Gazebo and ROS share the same 

communication structures, making it easy to manage and process the data from the 
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sensors and robots through ROS nodes. The data-communication method is well-

documented on the official ROS website [22]. Besides, many existing packages can be 

implemented in the simulation with few modifications thanks to the ROS community.  

B. V-REP 

There is no native ROS node for V-REP; however, V-REP provides a ROS-Interface as 

part of the V-REP API framework. It duplicates the ROS API and turns V-REP into a 

ROS node to communicate with other nodes as Gazebo does [19]. 

C. Webots 

Webots uses the standard ROS controller, and it generates ROS topics for each element 

(sensors, actuators and robots) in the scene. In this way, Webots acts as services and 

topics and can communicate with other ROS nodes in the same way Gazebo does [20]. 

4.1.5 Realistic Simulation 

The closer the simulation is to reality, the more accurate the algorithm's test is. The time 

cost will also be reduced. 

Table 2. The physics engine of V-REP, Gazebo and Webots [16] 

 Physics Engine 

V-REP Bullet, ODE, Vortex, and Newton 

Gazebo Bullet, ODE, Sim-body, and DART 

Webots ODE 

The table shows the native physics engines of all three robotic simulators. Both V-REP 

and Gazebo support four different physics engines, while Webots only has one ODE 

engine [16]. 
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4.1.6 Multi-robot Application 

The simulator must support the multi-agent applicant. 

Table 3. Multi-robot application in V-REP, Gazebo and Webots [16] 

 Multi-robot Application 

V-REP Yes 

Gazebo Yes 

Webots Yes 

As can be seen from the table, all three simulators support the multi-robot application. 

4.1.7 Discussion and Selection 

Regarding the 3D model library, all three simulator includes a vast local library of 3D 

models ranging from small items like furniture to infrastructure. Besides the local library, 

thanks to the open-source, Gazebo provides an additional online library of 3D models 

supported by numerous developers [18] [19].  

In terms of scene modelling and editing, Gazebo requires an in-depth knowledge of SDF 

and URDF file because it cannot edit the model inside Gazebo [18] [19]. For instance, to 

replace the laser scanner with a stereo-camera in a robot, the corresponding URDF file 

should be modified, and the simulation must be restarted to enable the new sensor. At the 

same time, it is much more convenient to work with V-REP and Webots. The scene 

elements can be edited directly inside V-REP and Webots [19] [20]. 

Besides, all three simulators are all integrated with ROS to some extent. Gazebo is 

currently supported by ROS and has already been integrated [22]; therefore, it is the most 

straightforward one to work with Gazebo. Regarding V-REP and Webots, they are 

integrated through an external framework and packages [19] [20]. In the meantime, all 

three software can simulate multi-robot simultaneously. So far, it is invidious to select; 

however, the Webots's poorest simulation and graphic quality make it the first to be 

eliminated from the list. Webots only support the ODE physics engine, while Gazebo and 

V-REP are equipped with various physics engines.  

Overall, Gazebo will be selected as the simulation platform for future development, even 

though it is much easier to simulate in V-REP. The reason behind this is that even if 
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Gazebo requires extra effort to edit the scene, the editing can still be done in a small 

amount of time when the user gets familiar with URDF and SDF files. Besides, 

modelling through the URDF file can create a more complex and more accurate 

environment compared to V-REP [19]. Whatsmore, the open-source community provides 

extensive documentation of control algorithms, simulation scenarios, robot configuration, 

and sensor information, which V-REP lacks. These will help reduce the investment 

demanded to develop the future project. 

4.2 Robot Simulation 

In this section, the literature of the two main components (SLAM and path planning) in 

autonomous navigation will be reviewed in detail. 

4.2.1 Robot SLAM Algorithm 

Unlike traditional 2D-indoor localization and mapping, USAR robots are required to map 

and localize in a full-3D highly cluttered environment [1]. Conventional 2D laser SLAM 

is not applicable in this situation. The two most robust 3D SLAM algorithms were found 

during the research: 1) visual-based SLAM and 2) lidar-based SLAM [23] [24]. 

4.2.1.1 Visual-based SLAM 

Visual-based SLAM used a set of cameras or stereo-camera to obtain images of the 

environment. It estimates the robot's motion and position by extracting numbers of 

features (mostly point clouds) from the photos while simultaneously using this data to 

generate a 2D or 3D map [23]. It stores the images and corrects the map when the robot 

revisits a past location. The review is limited to the methods that can estimate a real-scale 

environment [13]. In this section, papers pertaining to visual-based SLAM will be 

discussed in detail. These methods are: 1) RTAB-Map [13], 2) ORB-SLAM2 [25], 3) S-

PTAM [26], 4) DVO-SLAM [27], and 5) RGBiD-SLAM [28]. 

In [13], a Real-Time Appearance-Based Mapping (RTAB-Map) was proposed for long-

term and large-scale environment mapping. It is open-source and has been integrated into 

ROS as a rtab-map-ros package. When the odometry is no available on the Robot, 

RTAB-Map provides visual odometry using two common odometry approaches: Frame-

To-map (F2M) and Frame-To-Frame (F2F) [29]. F2M registers the new frame against a 
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feature map created from the last keyframe, while F2F registers against the last keyframe 

[29]. It can use either an RGB-D or stereo camera as the input. RTAB-Map detects 

features called GoodFeaturesToTrack (GFTT) [30] when receiving the image of the 

environment. The iterative Lucas-Kanade [31] is used to derive disparity between the left 

and right images for stereo-image. In comparison, the RGB-D frame's depth image acts 

as a mask for GFTT to avoid invalid features. The detected features are then matched 

either by nearest neighbour search [32] with nearest neighbour distance ratio test [33], 

which registers BRIEF descriptors [34] against the extracted features in the feature map 

or directly against the last keyframe. RTAB-Map can then estimate the robot's position by 

computing the transformation of the current frame to the previous keyframe (F2F) or the 

feature map (F2M) using the Perspective-n-Point RANSAC implementation [13] [35]. A 

block matching algorithm was [36] then introduced to convert the stereo image into a 

point cloud, in which an occupancy grid is generated. Also, a loop closure detection 

described in [36] is used to optimize the localization and mapping accuracy. The 

performance was evaluated on four different datasets: KITTI [37], TUM RGB-D [38], 

EuRoC [39] and PR2 MIT Stata Center [40]. The matrix used to evaluate the 

performance is the absolute trajectory root-mean-square error (ATE) from [38].  

ORB-SLAM2 [25] and S-PTAM [26] are both real-time keyframe-based (F2F) SLAM 

method. ORB-SLAM2 works with monocular, stereo and RGB-D cameras, while S-

PTAM only uses the stereo camera. They include map reuse, loop closing and 

relocalization. ORB-SLAM2 prep-processes the image to only extract ORB features [41] 

at salient key points, and S-PTAM chose to extract GFTT features with BRISK extractor. 

The camera' pose is then initialized and estimated by matching the extracted features with 

the last keyframe [25] [26]. For ORB-SLAM2, A locally visible map is built with the 

covisibility graph of extracted keyframes once the estimation and feature matching is 

done. For S-PTAM, it generates a local map based on the method presented in [42] called 

Parallel Tracking and Mapping. Both ways can detect the loop closure using a bag of 

words place recognition module described on DBoW2 [43]. The pose and map are 

refined by motion-only BA(bundle adjustment) when a loop closure is detected. ORB-

SLAM2 was tested on KITTI [37], EuRoC [39], and TUM RGB-D [38] dataset. The 

evaluation matrix is the ATE from [38] as well. At the same time, S-PTAM was only 
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tested on the KITTI database [37] [26]. It calculates the root-mean-square-error between 

the output frame and the ground truth. 

Similarly, DVO-SLAM [27] and RGBiD-SLAM [28] are also keyframe-based (F2F) 

visual SLAM. However, they proposed a different odometry algorithm called dense 

visual odometry [27] [28] [44]. Instead of extracting features from the camera frame to 

estimate camera motion, they used joint photometric and geometric errors in RGB-D 

images. A single RGBD camera can achieve this. They can construct a 3D map by 

concatenating each keyframe's point clouds to the map point cloud [28]. It should be 

pointed out that DVO-SLAM requires an external loop closure detection approach to 

refine the pose estimation and map [27]. DVO-SLAM evaluate the ATE based on the 

TUM RGB-D dataset [27] [38], and RGBiD-SLAM compared their results with the state-

of-the-art and their database in terms of MSR of trajectory estimation.  

4.2.1.2 Lidar-based SLAM 

Laser-based SLAM used a laser scanner to obtain point-cloud data of the environment. It 

estimates the robot's motion and position by comparing multiple laser-scan measurements 

and builds a map using the received data [24]. In this section, papers pertaining to lidar-

based SLAM will be discussed in detail. These methods are: 1) RTAB-Map [13], 2) 

Google Cartographer [45], and 3) SegMatch [46]. 

RTAB-Map also introduced the lidar-based SLAM [13]. It collected point cloud data 

using a 3D-lidar. There are also two standard methods to generate odometry: Scan-To-

Scan (S2S) and Scan-To-Map (S2M). They are similar to visual odometry but change the 

frame to point clouds and substitute the local map with a point clouds map. The point 

cloud map is generated from all the past keyframes using either Point-to-Point (P2P) or 

Point-to-Plane (P2N) method [13]. When a new point cloud is received, it will be added 

to either the point cloud map (S2M) or the last keyframe (S2S) after iterative-closest-

point (ICP) [28] is done using libpoint-matcher [44]. Unlike visual SLAM in RTAB-

Map, the pose estimation has to be first initialized from the last registration or external 

odometry. The pose is then estimated by matching the current point cloud data with the 

keyframe or the point cloud map. The pose and map optimization are completed in the 

same way as the visual-based SLAM. The 2D occupancy grid can also be generated by 
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filtering and ground segmentation described in [13]. The evaluation criteria are the same 

as the one mentioned in the last section. 

Google proposed a lidar graph-based SLAM approach called Google Cartographer in 

2016 [45]. The SLAM process is divided into two parts: local SLAM and global SLAM. 

The local SLAM estimates the pose and orientation based on a small and low-resolution 

map (submap) using a Ceres scan matcher. The submap is built in a probability grid form. 

Every hit and reflection on the LiDAR scan are identified as an occupied pixel and is 

added to the grid. The area between the obstacle and the robot and the area where the 

laser is not reflected is identified as free space in the grid map. The pose is estimated by 

comparing the current position with the submap. The global SLAM uses the sparse pose 

adjustment method [47] to minimize the shifting error accumulated in local SLAM. The 

scan matching in global SLAM is similar to the one in local SLAM but with a broader 

range to cover the submap. When a loop closure is detected, the submap will be refined 

and reconstructed based on the scan matching. Algorithms like Karto SLAM [48], Lago 

SLAM [49], GMapping [50] and Hector SLAM [51] have similar functions, but they only 

support 2D lidars. The algorithm was evaluated based on the KITTI benchmark [37] in 

terms of trajectory estimation and was also tested in the real world with various 

conditions [45].  

In [46], a 3D-lidar based SLAM is proposed called SegMatch. It first segments the point 

clouds collected into different elements, for example, parts of vehicles and buildings, 

using the "Cluster-All method" from [52]. Features can then be extracted from the 

segments based on two descriptors: eigenvalue based and ensemble of shape histograms. 

A random forest classification algorithm is deployed to classify the features further, and 

the corresponding features are matched based on the classification. Matched elements are 

then fed to a random sample consensus (RANSAC) [53] to test the accuracy. It detects a 

loop-closure when there are features matched successfully. It is noticeable that SegMatch 

does not provide pose estimation. SegMatch's performance was evaluated by calculating 

the successful matching rate of the segments generated from the KITTI odometry dataset 

[37][46]. 
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4.2.1.3 Summary of Limitation 

In visual-based SLAM, the localization and mapping are achieved by matching the 

features extracted from the images with either the keyframe or the local map [25] [41] 

[26] [27] [28]. However, it is assumed that the camera is not obstructed, and there are 

always enough features in the image. In real life, the image quality suffers from changes 

in illumination and visibility [46]. The visual SLAM becomes unreliable when the image 

quality is low [46]. In contrast, the performance of lidar-based SLAM is not affected by 

illumination. 

In lidar-based SLAM, the localization and mapping are achieved by matching the point 

cloud data from the laser scanner with either the keyframe or the point cloud map [13] 

[46]. It only extracts geometry information of the environment. Therefore, there is no 

semantic information gathered. The odometry may drift a lot when the environment has a 

regular shape, for example, a corridor. When a robot with a short-range scanner moves 

along a corridor, the point cloud data received will be two parallel lines. The map will not 

be correctly updated since it can not detect any change in the keyframes or the point 

cloud map.   

4.2.1.4 Discussion and Selection 

Overall, RTAB-Map is selected for future simulation because it is the only algorithm 

supporting both visual-based and lidar-based SLAM [13]. Both methods in RTAB-Map 

can generate a 2D occupancy grid required by most of the popular path planner [54]. 

Besides, it is readily integrated with ROS as the rtabmap_ros package.  
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4.2.2 Robot Path Planning 

Once the robot is localized on the map, the next step is to navigate the robot to explore 

the unknown environment. In this section, papers pertaining to path planning will be 

discussed in detail. These papers can be further categorized by 1) global path planner and 

2) local path planner [14] [15]. 

4.2.2.1 Global Path Planner 

The global path planning algorithm can be further divided into three categories: 1) grid-

based algorithms [55] [56], 2) evolutionary algorithms [57] [ 58] [59] [60], and 3) 

sampling-based planning (SBP) [54] [61] [62] [63].  

4.2.2.1.1 Grid-based Algorithms 

In grid-based path planning, a 2D-occupancy grid is assumed to be provided. The optimal 

path is calculated based on the state of each cell in the grid. In this section, papers 

pertaining to grid-based algorithms will be discussed in detail. These methods are: 1) 

Astar (A*) [55] and 2) D* [56]. 

Peter E Hart [55] proposed a grid-based pathfinding algorithm called Astar (A*), which is 

one of the most widely used algorithms. It generates the optimal path by minimizing an 

evaluation function 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛). 𝑔(𝑛) is the actual cost of moving from starting 

cell to current cell n. ℎ(𝑛) is the cost of the estimated path from the current location n to 

the destination. The cost of moving from the current cell to each adjacent cell is 

computed, and the path with the minimum cost is chosen. The cost is evaluated by either 

the Euclidean distance formula or the Manhattan distance formula [55]. The experiment 

results showed that A* can always find the optimal path with the least cost in a 2D 

environment. 

Similarly, D* is a modified version of A* algorithm [56]. It does not require a completed 

map, and every cell in the grid is assumed to be accessible initially. When a new obstacle 

is detected, D* will re-compute the cost function and update the grid. Instead of 

calculating 𝑔(𝑛) from the current position toward the goal, it computes the cost 

backwards from the destination cell to each of the adjacent cells.  
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4.2.2.1.2 Evolutionary Algorithms 

The evolutionary algorithms optimize the path planning by mimicking the biological 

behaviour, for example, evolution, mutation, recombination, and natural selection [91]. In 

this section, papers pertaining to evolutionary algorithms will be discussed in detail. 

These methods are: 1) Particle Swarm Optimization (PSO) [57] [58] and 2) Genetic 

Algorithm (GA) [59] [60]. 

In [57] [58], Particle Swarm Optimization (PSO) method was introduced to generate an 

obstacle-free path for robot navigation. It was inspired by the social foraging behaviour 

of birds and fishes. The obstacles are defined as a set of particles. Each particle is 

assigned a coordinate, for example (𝑥0,𝑦0) and has a circular region (obstacle zone) 

where the robot should not enter. PSO then determines a new particle for each particle. 

The new particle has a minimum distance to the goal and a maximum distance to the 

original particle. The maximum distance is set manually based on the radius of the 

circular region. PSO then finds the best-fitted lines among all the new particles from the 

starting point toward the goals. The path which does not violate the obstacle zone and has 

the lowest distance is selected. PSO re-computes the paths when a new obstacle is 

detected or when the existing obstacles move. The experiment was conducted in a 

simulated environment with static and moving obstacles. Results showed that PSO could 

generate a smooth and obstacle-free path in an environment with stationary and moving 

obstacles [57] [58]. 

A heuristic approach called Genetic Algorithm (GA) was proposed in [59] [60]. It is 

inspired by the evolution process. An occupancy grid of the environment is required. The 

robot is assumed to move only in four directions (up, down, left, and right) in the grid. 

GA generates "populations" of the possible paths ("individual") iteratively. From each 

"population", the best path determined by a user-defined fitness function are collected to 

form the next "population". The fitness function may include total path length, number of 

turns, and number of collisions. The solution is prevented from converging to the local 

minima using the crossover strategy [59] [60]. GA was tested to find the optimal path in a 

10x10 and 100x100 grid world [59]. Results illustrated that GA could effectively handle 

path planning in an environment with static obstacles. 
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4.2.2.1.3 Sampling-based Algorithms 

In sampling-based algorithms, sample points are generated in the map, and they are 

intended to be connected to create the path from starting point to the goal. In this section, 

papers pertaining to sample-based algorithms will be discussed in detail. These methods 

are: 1) Rapidly-Exploring Random Trees (RRT) [61] [ 63] and 2) Probabilistic Road Map 

(PRM) [62]. 

In [61] [63], Rapidly-Exploring Random Trees (RRT) is implemented to find the optimal 

path. It was designed to explore a high-dimensional space randomly by generating a 

space-filled tree [59]. The search space is randomly sampled into points q, which does 

not collide with the obstacles. The tree grows from the starting point 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 which is 

connected with a random number of points 𝑞𝑛𝑒𝑤. Each 𝑞𝑛𝑒𝑤 continues to connect with 

adjacent points following the same pattern until 𝑞𝑛𝑒𝑤 hits the goal 𝑞𝑔𝑜𝑎𝑙. The algorithm is 

inherently biased to explore toward the goal and the largest unexplored area to accelerate 

the exploration. The shortest connected branch is then selected as the optimal path. First, 

it was simulated to find the optimal path in a 2D maze, and the experiment was extended 

to compute the path for a 3D piano moving from one room to another. Results showed 

that RRT performed well over a wide range of applications, including 2D and 3D 

environments [61][ 63], and it does not need any parameter tuning or pre-processing.  

                                                                        

Figure 4. RRT growing process [61] 

[62] used the Probabilistic Road Map (PRM) to find the path. Similar to RRT, it also 

extracts random sample 𝑞 which is collision-free from the search space. While each 𝑞 is 

set to connect with k nearest neighbours using a local planner. If the line between two 
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points is collision-free, an edge will be added between this two-point. A roadmap is then 

constructed (Figure 5). By adding the starting point and the goal to the map, one or more 

paths can be obtained from the roadmap. However, these paths might not be connected, 

or the path might not be optimal when the sample is not enough. The evaluation criteria 

for PRM are the cost of finding the best path in a 2D configuration-space. Results showed 

that PRM could find the path from the starting point to the goal in both 2D and 3D 

environments [62]. However, PRM requires a pre-processing of the search space to create 

a roadmap before planning the path. 

                                                           

Figure 5. Pre-processed road map [62] 

4.2.2.1.4 Summary of Limitations 

For grid-based algorithms, because of the grid map, the computation cost increases 

dramatically for large scale and high-dimensional environment [55] [56] [54].  

Regarding evolutionary algorithms, they face the same problem as grid-based algorithms. 

In addition, it is difficult to tune the parameters appropriately, and they can be easily 

trapped in the local minimum [54] [57] [58].  

The major disadvantage of the sampling-based algorithms is that the solution is not 

always optimal [61] [63]. 

4.2.2.1.5 Discussion and Selection 

Because of the difficulty of parameters tunning and computational cost, the evolutionary 

algorithms are listed as the third option. The grid-based algorithms are chosen regardless 
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of the computational cost because RTAB-map can provide 2D-occupancy map from both 

visual-based and laser-based SLAM. Also, A* is already integrated into ROS as one of 

the main global planners [64]. Therefore, A* is selected for the future development of the 

3D simulator. 

4.2.2.2 Local Path Planner 

In this section, three local planners that are currently available in ROS will be reviewed: 

1) Dynamic Window Approach (DWA) local planner [65], 2) EBAND local planner [66], 

and 3) Time Elastic Band (TEB) local planner [67]. 

4.2.2.2.1 DWA local planner 

In [65], a Dynamic-Window Approach (DWA) was introduced to navigate the robot 

using a 2D occupancy map. DWA planner extracts samples of linear velocity (dx, dy) and 

angular speed (𝑑𝑤) from the robot's control space. The extracted samples are then used to 

predict the possible moving trajectories in a short time, as shown in Figure 6. The 

infeasible trajectories (collided with obstacles) are discarded. After that, all possible 

trajectories are evaluated by an objective function with characteristics including 

proximity to obstacles, proximity to the goal, proximity to the global path, and speed. The 

best trajectory is then fed to the base controller, which converts the data into the motor 

command to control the mobile base. The process is repeated for each discrete time and is 

terminated when it reaches the goal. The experiments are conducted in a 2D corridor with 

static obstacles. Results showed that the DWA planner yields a very robust and safe 

collision avoidance. The robot also reacts very fast, even with a high moving speed. 

                                                                                                        

Figure 6. Estimated moving trajectories in the DWA planner [65] 
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4.2.2.2.2 TEB local planner 

[66] proposed a local path planning algorithm called Time Elastic Band (TEB) local 

planner. It gathers safety distance from the obstacles, velocity and acceleration 

constraints, and geometric and kinematic constraints of the mobile robot to generate a 

sequence of vehicle posse (x and y position, and orientation) for each discrete of time 

[66] [68]. Each parameter is assigned with a weight (w). TEB planner then modifies the 

global trajectory based on the poses generated. Similar to the DWA planner, the required 

linear and angular velocity will be fed to the base controller moving the robot to follow 

the trajectory. The experiments illustrated that the TEB local planner yields a smooth 

moving trajectory for the mobile base [66].  This method is highly adaptive to different 

robot configurations and applications.  

4.2.2.2.3 EBAND local planner 

A similar approach [67] called Elastic Band (EBAND) local planner is proposed to drive 

the robot and avoid moving obstacles.  EBAND planner modifies the global trajectory by 

simulating two forces: an internal contraction force and an external repulsive force. The 

global trajectory is simulated to receive a tension force toward the centroid of itself, as 

shown in Figure 7 a) and b). The trajectory, at the same time, is repelled from the 

obstacles to avoid the collision. The clearance around the obstacles is depended on the 

required safety distance from the obstacles. Circles called bubbles are then generated 

along the path, and the size of the bubble is based on the room around the robot. The 

planner then sends the velocity command to move the robot along the trajectory in the 

same way as the TED planner. Results showed that the EBAND planner has a similar 

outcome as the TEB planner. Both planners generate smooth trajectories and avoid the 

dynamic obstacle. However, instead of modifying part of the global trajectory, EBAND 

makes the incremental adjustment to the entire path.  
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Figure 7. a) a path generated from the global planner. b) Applying both tension and 

contraction force. c.d) The modified path due to a new moving obstacle [67] 

4.2.2.2.4 Summary of Limitation 

For DWA_local_planner, the biggest drawback is that it does not consider the moving 

base's kinematic limitation. In another world, the robot will not keep a safe distance from 

obstacles when moving along the trajectory, which might cause collision [69].  

Regarding TEB_local_planner and EBAND_local_planner, the direction of the moving 

obstacles might worsen the path planning. As shown in Figure 8, if an obstacle moves 

across the local trajectory, it will continuously deform the path like an elastic band. The 

path, therefore, might not be optimal. It may even fail the planning when the moving 

obstacle "pull" the path and moves too close to another obstacle, which will eventually 

cut the trajectory. 

                                 

Figure 8. Pedestrian crossing the path generated by TEB planner [67] 
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4.2.2.2.5 Discussion and Selection 

Because the disaster environment can be extremely complex and dangerous, it is critical 

to keep the mobile robot from colliding with the obstacles [1]. Once the robot is stuck, it 

is almost impossible for the human to retrieve the robot. Therefore, TEB_local_planner 

and EBAND_local _planner are preferred because they provide clearance room from the 

obstacles and smooth the moving trajectory.  

4.2.3 Victim Identification 

After the 3D simulator and robot navigation are chosen, the last objective is for the robot 

to search and identify the victim. There are five conventional equipment types used for 

this purpose: electric visual detecting device, fibre optic detector, thermal imaging 

detector, canine, and sound detector [70]. However, Gazebo only provides thermal 

camera and video camera plugins. Therefore, this section will review the literatures 

developed based on these two sensors: 1) thermal-based detection [71] [72] [73] and 2) 

visual-based detection [74] [75] [76] [77] [78]. 

4.2.3.1 Thermal-based Detection 

In this section, papers pertaining to thermal-based algorithms will be discussed in detail. 

These methods are: 1) Heat Map Localization [71], 2) Histograms of Oriented Gradients 

(HoG) [72], and 3) Census Transform Histogram (CENTRIST) [73]. 

In [71], a heat map is generated based on readings from the thermal sensor. The heat map 

is shown as a 2D grid of heat pixels, which are coloured based on the colour gradient and 

the thermal readings (Table 4). The victim detection on the heat map is divided into two 

parts: offline detection and online detection. Offline detection requires a completed heat 

map. The pixel whose temperature is higher than a threshold is marked as a warm pixel. 

The warmest pixel in a continuous cluster of warm pixels is then detected as potential 

victims and can be confirmed as real victims based on other sensor input. Regarding 

online detection, the heat map is continuously updated based on the sensor input. Three 

algorithms are proposed to run online detection: greedy victim detection, forward victim 

detection and backward victim detection. The backward detection yields the highest 

accuracy. When a warm pixel is detected, it will iteratively mark the pixel with the 

highest temperature in the sensor range as the victim. If the same pixel is selected at least 
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three times, this pixel will be confirmed as the victim and added to the victim list. Two 

experiment scenarios from the RoboCup GermanOpen 2011 were created to test the 

algorithms. The results showed that the algorithm was able to detect most of the victims 

in the scene.  

Table 4. Colour gradient in the heat map [71] 

 

[72] proposed a different method called Histograms of Oriented Gradients (HoG) to 

detect victims through thermal imaging. The captured thermal image is first pre-

processed to a grayscale image and equalized. The weight of each pixel and the edge 

orientation of the object can then be calculated. Pixels are categorized into several bins, 

and a histogram is generated based on each bin's weight. After that, the HoG features are 

classified through trained Support Vector Machines [79] to detect human presence. The 

method was examined based on the author's dataset, which contains subjects with 

different poses, appearance, illumination, and background. The result showed that HoG 

could successfully detect over 95% of the human presence in the images. 

Similarly, the author in [73] classifies the thermal images through a trained Support 

Vector using features extracted. However, instead of using HoG features, they 

implemented a new descriptor called Census Transform Histogram (CENTRIST) [80]. 

The performance of the proposed method is evaluated based on the Detection Error 

Tradeoff [73]. The results showed that classification using CENTRIST features is more 

accurate than using the HoG features. 

4.2.3.2 Visual-based Detection 

In visual-based detection, the robot can detect the human body or parts of the human 

through the RGB or RGB-D image. It often involves using machine learning to classify 

the image [81]. The author in [81], for the first time, proposed and tested five machining 

learning techniques to identify victim in a cluttered USAR environment: FPN with Faster 
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R-CNN [74], SSD [75], YOLOv2 [76], YOLOv3 [77], and RetinaNet [78]. In this 

section, the methods mentioned above will be discussed in detail. 

Feature Pyramid Network with Faster Region-Based Convolutional Neural Networks 

(FPN with Faster R-CNN) was first introduced in [74] to identify different objects. FPN 

implements ResNets [82] to generate multiple feature maps using a single RGB image as 

input. The extracted feature maps are then passed to Fast R-CNN [83], a region-based 

object detector, to extract features. The model is tested on the 80 category COCO 

detection dataset, and the detection is evaluated in both COCO-style Average Precision 

(AP) and PASCAL-style AP. The results show that the model can achieve 36.2 COCO-

style AP in object detection.   

Single Shot Detector (SSD) [75] is the first deep-network-based object detector that can 

generate bounding boxes with no features required. It uses the pre-trained VGG-16 

network to generate feature maps whose size is decreased progressively through a set of 

different convolutional networks. The feature map is presented as a grid, and each layer 

outputs several bounded regions (bounding boxes) for the feature maps and predicts the 

object classification within those regions. The model was trained on the PASCAL VOC 

dataset consisting of 4952 images and the COCO dataset. The result shows that SSD can 

achieve over 70% mean average precision from PASCAL VOC2007 testing [75]. The 

performance of the SSD model is further evaluated using the detection analysis tool from 

[83]. 

You Only Look Once version 2 (YOLOv2) [76] is a real-time object detector that can 

detect over 9000 different categories of objects. The RGB image is pre-processed into an 

NxN grid and passed to a single pre-trained CNN called Darknet-19. The CNN then 

predicts five bounding boxes for each cell in the grid. Bounding boxes with no object 

detected are then discarded. Eventually, several bounding boxes with the corresponding 

classification will be generated. The author used the standard ImageNet 1000 database for 

classification training and PASCAL VOC for object detection training. The experiments 

illustrate that the mean average precision is 73.4%. 

YOLOv3 [77] is an improved version of the YOLOv2 detector. It implements a different 

CNN for feature extraction called Darknet-53, consisting of 53 convolutional layers. 
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Besides, instead of predicting the bounding box in a single stage, YOLOv3's prediction is 

made at three different scales. It upsamples the feature maps to get more semantic 

information so that it can detect more small objects. 

The proposed detector in [78] is called RetinaNet Detector, consisting of one backbone 

network and two subnetworks. The implemented backbone network is the FPN [82], and 

it outputs multi-scale feature maps from a single RGB-D image. The extracted feature 

maps are then passed to the subnetworks. The first subnetwork classifies the feature maps 

through 4 3x3x256 convolutional layers, and the second subnetwork generates bounding 

boxes for each feature map through four convolution layers of the same size. The model 

was tested based on the COCO dataset, and the detection performance is evaluated as 

COCO-style AP, which is 39.1 from the experiment result. 

The results in [81] show that all five models can perform victim identification in a dark 

and cluttered environment. RetinaNet outperforms the rest when using the RGB-D and 

RGB database. The overall performance increases when using the RGB-D dataset 

because the depth image is not affected by illumination changes. 

4.2.3.3 Summary of Limitation 

In thermal-based detection, it is possible to detect and identify victims in the USAR 

environment. However, thermal images lack semantic information to determine the 

condition of the victim. Also, when the victim's temperature is close to the surrounding, 

the victim's accurate location might not be obtained [71]. 

Regarding visual-based detection, the current state-of-art can detect over a wide range of 

objects through RGB or RGB-D images. However, the detection accuracy suffers from 

poor lighting [81]. Besides, the range of the camera view is very limited, and the view 

can be easily blocked by obstacles and dust. Therefore, it is almost impossible to localize 

a victim with only a visual camera [70]. 

4.2.3.4 Discussion and Selection 

It is found that thermal cameras and visual cameras are complementary when searching 

and identifying the victims [71] [70]. In USAR, the thermal camera is first deployed to 

determine the victim's position, and the victim's condition will then be decided through 
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the visual camera [70]. The online victim detection through heat map [71] is preferred in 

this project to localize the victims. Because a thermal camera plugin 

"hector_gazebo_thermal_camera" is available in the ROS. It works as a combination of 

thermal and visual cameras. For victim identification, instead of using deep learning, a 

different approach will be built to send victim information because the model requires a 

large dataset and other works to accurately detect the victim, which is not feasible in the 

timeline. The victim information will be sent to the robot through a ROS topic when the 

robot detects the victim. The proposed approach is sufficient for the researcher to test the 

multi-robot coordination algorithms since they only demand victim information as input. 

5. Final Simulator Design 

This section will describe the final simulator design in detail, which is divided into five 

components: 1) 3D Environment Simulation, 2) Frontier Exploration, 3) Map Merging, 4) 

Victim Identification, and 5) Multi-Robot Frontier Exploration 

5.1 3D Environment Simulation 

In this section, a simulated world was built consisting of all the components from the 

project requirements, which divides this section into four categories: 1) Terrain, 2) 

Unstructured Obstacles, 3) Natural Environment and 4) Victim.  

5.1.1 Terrain 

In Gazebo, terrain surface can be simulated through a digital elevation model (DEM) or a 

height map [84]. A DEM is a 3D model of a terrain surface created using sensors, for 

example, LIDAR, radar, and cameras. In comparison, a height map is a raster image of a 

terrain surface in grayscale. Each pixel stores the elevation data of the terrain surface. 

The DEM file of a specific region of interest can be downloaded from Global Land Cover 

Facility, which provides a high-resolution topographic database. The heightmap can also 

be downloaded from the web. Also, both DEM and height maps can be manually created 

in Blender, a free-open-source 3D creation software. 

In order to insert a terrain surface into a Gazebo world, the following lines (Figure 9) 

should be added to the corresponding .world file. 
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Figure 9. SDF file of a terrain model [84] 

The <uri> session specifies the location of the DEM file or the heightmap image. Gazebo 

will automatically detect the DEM file or the plain image and transform it into a terrain 

model. The terrain's size and position can be changed in <size> and <pos>, respectively. 

A random heightmap (Figure 10. left) was chosen to demo the terrain modelling. As can 

be seen in Figure 10, Gazebo automatically transforms the grayscale heightmap into a 3D 

terrain model. 

                                                                   

Figure 10. Height map (left) and terrain model (right) 
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5.1.2 Unstructured Obstacles 

Gazebo provides various unstructured obstacles models in the online library, such as 

collapsed fire stations, collapsed houses, and barriers (Figure 11). Any model that is not 

available in the online library can also be created in Blender and imported to Gazebo [85] 

                                                                                  

Figure 11. 3D models of unstructured obstacles 

5.1.3 Natural Environment 

Like unstructured obstacles, Gazebo also provides various models that we can find in the 

natural environment, such as oak trees and pine trees (Figure 12). External 3D models 

can also be imported to Gazebo. 

Figure 12. 3D models of trees 

5.1.4 Victim 

Unfortunately, Gazebo does not provide a human model. However, the human model can 

be created using an external software called MakeHuman [86]. It can create human 
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models of different gender, ages, height, colour, and posture. The model can then be 

directly exported as a .dae file and import to Gazebo. 

Figure 13. MakeHuman user interface 

5.1.5 Demo 

A world containing all the required features with uneven terrain was created to demo the 

capability of the 3D simulator. Figure 14 shows the scene has collapsed buildings, 

vehicles, barriers, trees, and victims. The red walls are built intentionally to avoid the 

robot exploring unboundedly.  

                                           

Figure 14. The simulated scene in Gazebo 
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5.2 Frontier Exploration 

This section discusses the simulation for robot frontier exploration. The frontier 

exploration requires four critical components: 1) Robot, 2) SLAM, 3) Navigation, & 4) 

Exploration Algorithm.  

5.2.1 Robot 

The robot selected for autonomous navigation is HUSKY [87]. HUSKY is a non-

holonomic four-wheel robot. Its rugged structure and high-torque drivetrain are suitable 

for robotics research in all terrains, including flat terrain, uneven terrain, and cluttered 

terrain. Also, HUSKY is readily integrated with ROS as a ros-kinetics-husky-simulator 

package [87].  

A HUSKY robot can be spawned in any world in Gazebo through the spawn_model node 

in spawn_husky.launch file in the husky_gazebo package. By default, it also initiates the 

robot_staate_publisher node to calculate the robot's forward kinematics and publish the 

transformation result through tf.  

The robot's configuration will be discussed amply in the Experiment section. 

5.2.2 SLAM 

RTAB-Map [13] was selected as the SLAM method for autonomous navigation. Visual-

SLAM mode was first tested because it yields better performance than the lidar-SLAM 

[13]. RTAB-Map requires stereo-camera input. However, HUSKY is not equipped with a 

stereo-camera in default. A Gazebo stereo-camera plugin called 

libgazebo_ros_multicamera.so was installed and added to the HUSKY Robot URDF file 

to simulate the stereo-camera [21]. It will create two camera topics (stereo_camera_left 

and stereo_camera_right) and output the raw image (Figure 15).  
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Figure 15. The Raw Image Output from Stereo Cameras 

The raw images are then passed to the stereo_image_proc node to perform rectification 

and de-mosaicing [13]. It projects two raw images into one common plane so that RTAB-

Map can better match the features. 

As shown in the navigation stack, the robot's odometry is required for the SLAM. RTAB-

Map can estimate the robot's odometry based on the pre-processed stereo image, robot 

transformation tf, and the base frame information using the stereo_odometry node. The 

estimated odometry information is then passed to the rtab_map node, which is the core of 

the rtabmap_ros package to start the SLAM. A 3D map consisting of point cloud data 

extracted from the image is generated (Figure 16). The black area represents the 

unexplored environment, and the green and yellow pixels are the features extracted from 

the stereo images. 

 

    a) 3D Point cloud map                    b) Simulated scene 

Figure 16. 3D point cloud map of the environment 



33 

 

Meanwhile, a 2D occupancy grid is created, as shown in Figure 17. The coordination 

represents the current position of the robot. The white and black pixels are the free space 

and the space occupied by the obstacles, respectively, while the grey pixels are 

unexplored space. The obstacle is defined as any object higher than a threshold that the 

user can change. 

 

    a) 2D occupancy map         b) Bird view of the simulated scene 

Figure 17. 2D occupancy grid of the environment 

5.2.3 Navigation 

After the robot generates the 2D occupancy map and localizes itself in the map, the next 

step is to navigate the map's robot. move_base package was implemented to achieve the 

global navigation in the simulated environment [88]. move_base is the most commonly 

used navigation package in ROS and is also the HUSKY's officially recommended 

package [88]. move_base package contains several global (e.g. A* algorithm) and local 

planners (e.g. DWA and teb_local_planner). Based on the 2D occupancy grid, move_base 

can generate a global moving trajectory and local trajectory for robot navigation when a 

destination is set, as shown in Figure 18. The red arrow indicates the goal and the robot's 

final orientation, while the red line and green line are the global trajectory and the local 
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trajectory, respectively. The move_base then sends the velocity command to the robot to 

follow the path to reach the destination. The green square represents the moving base.  

                                                                         

   

    a) 2D occupancy map         b) Bird view of the simulated scene 

 Figure 18. Global and local trajectories from move_base 

5.2.4 Exploration Algorithm 

Now, once the navigation stack is set up, the final step is for the robot to decide on its 

own to explore the unknown environment. A package called m-explore was implemented 

to run the frontier exploration greedily [89]. It subscribes to the 2D occupancy grid from 

RTAB-Map and calculates the map's frontiers as a set of points. It then ranks the frontiers 

according to the cost (distance to the robot). Frontiers whose cost is higher than a 

threshold will be discarded. The algorithm finds the centroid of the remaining frontiers 

and publishes it to the move_base. As shown in Figure 19, the blue line represents the 

frontier in the 2D grid. 
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Figure 19. Frontiers calculated in the 2D occupancy grid 

If the robot can not reach that frontier in a specified period, that point will be thrown into 

the blacklist. Until there is no more frontier found, the algorithm will terminate the 

exploration. In this way, the robot can eventually explore the entire space. Figure 20 

shows the flow diagram of the overall simulation. 

Figure 20. Flow chart of the overall simulation 



36 

 

5.3 Map Merging 

The map merging algorithm designed for this project is to greedily combine the 2D 

occupancy maps based on the robots' initial positions. The robot which calls the map 

merging node will be selected as the main robot, and its map will be chosen as the main 

map, while the maps of the rest robots will be identified as secondary maps. The 

secondary maps are shifted based on their relative positions to the main robot and added 

to the main map. The merged map is published on a new topic. Because the merged map 

is built upon the main map, the main robot can directly subscribe to the merged map and 

use it for navigation. The algorithm works for an arbitrary number of robots. Figure 21 

shows a demo of the map merging using two maps. 

  

      a) 2D occupancy map – robot_1         b) 2D occupancy map – robot_2 

  

              c) Merged map           d) Ground Truth 

Figure 21. Map merging demo 
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However, the algorithm has some limitations, and they will be discussed in the 

Experiment section.  

5.4 Victim Identification 

As mentioned in the victim identification section's literature review, the machine learning 

model requires a large dataset to be appropriately trained to identify the victim, which is 

not feasible for the project timeline. Therefore, the victim identification is simulated in a 

more straightforward approach. The first step is to detect the presence of a victim in the 

camera image. A thermal camera plugin called hector_gazebo_thermal_camera is 

implemented [90]. It colours the objects with heat signature as white (value equal to 255 

in greyscale) in the thermal image, and the rest of the image will be replaced with colour 

with much-reduced intensity (Figure 22). Any object with its emissive and ambient 

material properties set to maximum red will be detected as heat signature and marked as 

white pixels in the thermal image. As shown in Figure 22, the red circles' emissive and 

ambient material properties are set to maximum red, and they are represented as white 

circles in the thermal image. A victim model is created through MakeHuman [86], and its 

cloth's emissive light is set to maximum red through the SDF file. In this way, whenever 

the robot detects a heat signature in the thermal image, the robot knows the victim's 

presence, as shown in Figure 24. After that, a ROS topic containing victim information, 

such as victim position, orientation, and health condition, is created. Each time the robot 

detects a victim, it can subscribe from that topic to obtain corresponding victim 

information.  

However, only one victim can be simulated in this way because the value of the heat 

signature is set. If the robot can not consider the object's shape, any object with the heat 

signature will be identified as the same victim. To simulate different victims, a 

modification was made to the hector_gazebo_thermal_camera plugin. When an object 

with its emissive and ambient properties set to maximum green is detected, the heat 

signature value will be adjusted to 200. When the ambient and emissive properties are set 

to maximum blue, the heat signature's corresponding value is 150. Therefore, the robot 

can identify three different victims based on their heat signature, as shown in Figures 23 
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and 24. More victims can be simulated if more types of heat signatures are added to the 

simulation. 

Figure 22. Heat signature and processed thermal image 

 

Figure 23. Victim models in the visual camera view 
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Figure 24. Victim models in the thermal camera view (left to right: blue, red, and green) 

5.4 Multi-Robot Frontier Exploration & Victim Identification 

Since single robot frontier exploration was successfully simulated, more robots can be 

added to simulate multi-robot frontier exploration & victim identification. 

The <group> tag in the ROS launch file makes it possible to run multi-robot 

independently in a single world. The simulation described in the previous sections can be 

assigned with a namespace [92], for example, h_1. The simulation will run in the 

specified namespace. Every topic published in this simulation will have a prefix /h_1. A 

second simulation can then start with a namespace h_2. In this way, two robots can both 

run frontier exploration independently in the same world. Similarly, more robots with 

different namespaces can be added to explore the world.  

6. Experiments & Results 

This section will describe 1) the experiments performed to validate the 3D simulator 

design and discuss 2) the results concluded from the experiments. 

6.1 Experiments 
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In this section, 1) Computer Specification, 2) Assumption & Limitation, 3) Robot Setup, 

4) Environment Setup, and 5) Experiment Procedure will be described for future 

researchers to make the comparison. 

6.1.1 Computer Specification 

Before conducting the experiments, it is necessary to know about the hardware where the 

simulation is run. The computer specification is shown in the table below. 

Table 5. Computer specification 

Components Model 

CPU Core i7-8700 @ 3.20GHz 

RAM 16 GB 

GPU Nvidia GeForce GTX 1660 6 GB 

 

6.1.2 Assumptions 

Several assumptions were made to simplify the simulation. 

1. The simulation will be run on the premise of adequate lighting conditions. 

The visual SLAM from RTAB-map suffers from poor lighting conditions. Since 

the 3D simulator is designed to test the coordination algorithm, a correct mapping 

and location should be guaranteed.  

2. The initial yaw orientations of the spawned robots should be the same. 

The map merging algorithm greedily adds the maps together. It does not account 

for the rotational matrix between the maps. Therefore, the initial yaw orientation 

should be set to the same to avoid an incorrect map. 

3. The 2D occupancy map size should not change during the exploration. 

The 2D occupancy map generated by RTAB-map will expand when the map goes 

beyond the boundary. The map's origin will move, and the robots' initial positions 

in the maps will consequently change, which results in an incorrect merged map.  
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4. The resolution of the 2D occupancy maps should be consistent. 

Using different map resolutions will fail the map merging algorithm. 

6.1.3 Robot Setup 

The husky robot is modified to be equipped with one stereo camera using the Gazebo 

stereo_camera_plugin and one thermal camera using the Gazebo 

hector_gazebo_thermal_camera. The stereo-camera is located at (x = 0.8 m, y = 0 m, z = 

1.5 m) with respect to the robot's origin. The stereo camera is pointing downward at a 60-

degree angle with respect to the horizontal plane to achieve optimal mapping accuracy 

[13]. The thermal camera is located at (x = 0.4 m, y = 0 m, z = 0.4 m) with respect to the 

origin. The thermal camera is looking forward along the positive x-direction. The field of 

view of both cameras is 80 degrees.  

Regarding the software setup, the robot uses RTAB-map for SLAM, and the A* 

algorithm and DWA planner are used for global and local path planning, respectively.  

6.1.4 USAR Environment Setup 

Three environments with different sizes (15 m x 15 m, 20 m x 20 m, and 25 m x 25 m) 

were built to test the simulator's ability, as shown in Figure 25. Each environment 

contains several components discussed in the 3D Environment Simulation section and 

three victims (red, blue, and green). The obstacles were placed randomly, and the spacing 

between the obstacles should be larger than the robot size. The environment setup is user-

defined and can be changed based on the user's requirement. 

         

a) 15x15 𝑚2       b) 20x20 𝑚2      c) 25x25 𝑚2 

Figure 25. USAR simulated environments 
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6.1.5 Experiment Procedure 

Once the robot and the environments are set up, the next step is to run the frontier 

exploration. The experiments were divided into two tests: single robot frontier 

exploration and two robots frontier exploration. For single robot frontier exploration, one 

husky robot will be spawned at the corner of the environment and execute the frontier 

exploration. Similarly, in two robot frontier explorations, one robot will be spawned at 

the bottom left corner and the other at the bottom right corner. Both robots will start the 

frontier exploration at the same time. Each test was run four times for all three USAR 

environments.  

It is important to note that the robots were separated because when two robots started 

from the exact location, they would easily collide due to the limited control and map 

updating frequency. The SLAM can not identify the robot as an obstacle rapidly, and the 

robot could not react in time to avoid the collision, as shown in Figure 26. 

 

Figure 26. Robots collision during exploration 

Regarding victim identification, the victim is assumed to be identified when the thermal 

image's heat signature takes up more than 0.3% of the pixels' total number. The 0.3% 
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threshold is user-defined and is obtained when the robot is 5 m in front of the victim 

model, as shown in Figure 27.  

 

   a) Simulated Scene     b) Thermal Camera View  

Figure 27. Victim identification distance (5 m) 

For each experiment, the area explored, the distance travelled, and the victims found were 

recorded for each robot. The area explored is calculated based on the 2D occupancy map 

generated by the RTAB-map, and the distance travelled is obtained based on the 

stereo_odometry readings. For two robots frontier exploration, the area explored is 

calculated based on the merged map from the map merging node.  

The test was terminated either when the total area explored is greater than 85% of the 

environment or when no more frontier was found. The 85% was user-defined and can be 

changed based on the user's requirement. 

Due to limited computational power, the computer cannot run frontier exploration with 

more than two robots. When running three robots frontier exploration, the velocity 

control's actual frequency was so low that it resulted in jerks in the robot's movement. 

The obstacle avoidance failed quickly.  
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6.2 Results & Discussion 

This section shows the results from the experiments mentioned in the previous section 

and the associated discussions.  

Figures 27-30 indicate the average area explored with two fleet sizes in different USAR 

environments. The shaded area represents the range of area explored from the four trials. 

It is clear from the figures that the fleet with two robots explored the environment faster 

than the single robot in all environments. Also, the exploration rate drops over time when 

the area explored increases because of the greedy frontier exploration. The robot may be 

required to travel to the other side of the map, which is far from the current position, to 

continue mapping the unknown environment. Thus, the time will be wasted in travelling, 

which consequently reduces the exploration efficiency.  

 

Figure 28. The average area explored in 15x15 𝑚2 environment 
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Figure 29. The average area explored in 20x20 𝑚2 environment 

 

Figure 30. The average area explored in 25x25 𝑚2 environment 
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Also, as shown in Figure 31, the average distance travelled with two robots is always 

lower than the one with a single robot. Two_Robot_#1 and Two_Robot_#2 were the two 

robots deployed in the two-robot frontier exploration.  

 

Figure 31. Distance travelled in different environments 

These results are consistent with the statement that the exploration efficiency should 

improve with increased robot fleet size [1]. 

However, it should be pointed out that the average distance travelled rise exponentially 

with an increase in the environment size. This is because there were more frontiers found 

in the 25x25 𝑚2 environment and the robot started to travel back and forth between two 

areas which were far from each other, as shown in Figure 32. The greedy frontier 

exploration algorithm caused this inefficient travelling. For example, in the case where 

the robot started to travel from point 5 to point 8. When the robot reached point 8, the 

number of frontiers found around point 8 was less than the number of frontiers found 

around point 5 because it reached an obstacle. Therefore, the algorithm published a goal 

around point 5 to let the robot return to the starting point to continue mapping. This 
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repeating exploration happens more commonly in a large environment where an 

enormous amount of frontiers can be found. Consequently, the robot spends more timing 

exploring a larger environment. Compared to the path in the 25x25 𝑚2 environment, the 

paths in 15x15 𝑚2 and 20x20 𝑚2environments were cleaner and more straightforward, as 

shown in Figures 33 and 34. 

 

Figure 32. Exploration path in 25x25 𝑚2 environment 
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Figure 33. Exploration path in 20x20 𝑚2 environment 

 

Figure 34. Exploration path in 15x15 𝑚2 environment 
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One unexpected result was found from the experiments. The two-robots fleet was 

supposed to find more victims than a single robot. However, as shown in Figure 35, the 

two-robot fleet had better performance in finding the victim only in the 20x20 𝑚2 

environment. The possible reason is that the victims were placed with random orientation 

and posture. The robot needs to move closer than 5 m to identify the victim while the 

mapping range is further than the identification distance, which caused failure in 

identifying the victims. A conclusion can also be drawn from Figure 35 that the 

combination of greedy frontier exploration and victim identification through thermal 

camera did not guarantee to find all victims in the environment. 

 

Figure 35. Average victims found in different environments 
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7. Conclusion and Future Work 

In conclusion, the 3D simulator design can simulate frontier exploration and victim 

identification with multi-robots in the real world. A realistic 3D environment can be 

easily built based on the user's requirements as customized models can be imported from 

external software to the Gazebo simulator. RTAB-Map grants the robot the ability to map 

flat, cluttered, and uneven terrains and localize the robot accurately on the map. At the 

same time, the hector_gazebo_thermal_camera plugin enables the user to create 

distinguishable victim models with heat signatures. Regarding the map merging, a 

correctly merged map can be produced based on the initial robot positions.  

The design was tested with the greedy frontier exploration from the explore_lite package. 

The simulated result met the expectation that the frontier exploration efficiency improves 

with a larger robot team size [1].  

However, there still exist some limitations to the design. The computer used for 

experiments can only support two-robot simulations. If a more powerful computer is 

available, more tests can be run for frontier exploration with a larger fleet size to further 

validate the design. Also, a more robust map merging algorithm can be designed to 

consider the transformation between two maps so that the robots can start exploration 

with arbitrary orientation. Last, machine learning can be introduced to simulate victim 

identification close to reality.   

Overall, the design meets the requirements for future researcher to test their coordination 

algorithm and has great potential for future improvement. 
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